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errors and require expert curation for reliable detection of synaptic 
couplings. Alternative approaches use RNA barcoding to label projec-
tions of individual neurons, which may allow for high-volume tracing 
of neuronal circuits at single-cell resolution16.

Complementary mesoscale efforts to map more extended portions 
of the nervous systems of several model organisms have employed 
large-scale optical imaging as well as quantitative histological tract 
tracing. High-throughput tracing and imaging approaches (which 
require careful monitoring of sensitivity and specificity) have resulted 
in network data sets recording the connections among ‘local process-
ing units’ in Drosophila17 as well as interregional projections in the 
mouse18. A different approach builds on expertly curated neuroinfor-
matics databases of anatomical observations to construct aggregated 
data sets of network connectivity, such as in rat19 and macaque mon-
key20. Quantitative assessment of tract tracing experiments reveals 
relatively dense networks that include projections ranging in strength 
over six orders of magnitude21. Finally, there is continuous improve-
ment of methodology in diffusion imaging and tractography, which 
allows the inference of the trajectory and strength of white matter pro-
jections in the human brain22. Although subject to many experimental 
and statistical limitations23 and interpretational pitfalls24, compara-
tive studies have suggested that representations of long-distance con-
nectivity derived from invasive histological methods and noninvasive 
imaging of neuroanatomical structure are significantly related25.

Advances in optical cellular imaging have enabled recordings of 
neuronal activity in extended functional circuits26, in some cases 
spanning the whole organism27. Imaging of Ca2+ dynamics, as well 
as genetically encoded fluorescent reporters of membrane voltages, 
generates dynamic functional data from hundreds to thousands of 
neurons. Following processing steps such as image registration and cell 
sorting, the data can be represented as time traces that can be subjected 
to statistical time series analyses. Parallel recordings from hundreds of 
neurons enable computational strategies that identify and character-
ize functional interactions and statistical dependencies between neu-
rons. The resulting functional networks can be examined for modular 
organization, as well as for evidence of coherent network states and 
patterned temporal dynamics. Functional network analysis has pro-
gressed most strongly in applications to noninvasive electromagnetic 
or functional magnetic resonance imaging recordings from the human 
brain. Major themes include the definition of coherent subnetworks 
spanning the whole brain28 that exhibit changing topology in condi-
tions of rest (spontaneous activity) and task demand29, or in relation to 
visual input30. Methodological advances involve improved sensitivity 
in measures of statistical dependence, inference of causal links, and 
greater temporal resolution. An important frontier is the analysis of 
sequences of functional networks that change across time.

Linking elements and interactions in the brain to different domains 
of behavior has advanced from classic univariate (one region, one 
behavior) to bivariate (connectivity, behavior) and finally to multi-
variate frameworks31. Large-scale studies of brain-behavior relations 
and behavior-behavior dependencies, although still in their infancy, 
promise to provide a rich database for mapping the relations among 
brain processes and their contributions to perception, action and cog-
nition. In one such study carried out in Drosophila, the roles of neurons 
in triggering a diverse set of behaviors was systematically investigated 
by optogenetically stimulating individual neuronal cell lines and 
recording the associated behavioral responses32. Machine-learning 
techniques were then applied to extract statistically robust relations 
between neuron lines and behavioral phenotypes, resulting in a neu-
ron-behavior atlas. This work illustrates the utility of using relational 
data to establish mappings from clusters of neural elements to clusters 

of behavioral phenotypes. On a very different organizational scale, 
brain-behavior relations have been approached through meta-analyses 
of large repositories of human neuroimaging experiments reporting 
patterns of brain activation in relation to different domains of behavior 
and cognition. Aggregating brain imaging data from thousands of such 
studies allowed the construction of ‘co-activation networks’, whose 
major components and overall network topology strongly resembled 
functional networks derived from resting-state (task-free) record-
ings33. Finally, as demonstrated in a study of chemotaxis in C. elegans34, 
our understanding of the relationships between neural dynamics and 
observable behaviors can benefit from integrating data capturing the 
topology of anatomical networks with behavioral data acquired as the 
organism is interacting with its environment.

Brain networks may be viewed as ‘intermediate phenotypes’35 that 
are situated between the domains of genetics and molecular systems, 
and the expression of individual and collective behavior in the envi-
ronment. As such, brain networks mediate the causal effect of genet-
ics on behavior and vice versa. For example, genetic mutations may 
cause changes in network topology that in turn drive alterations in 
behavior. Indeed, network science has made substantial advances into 
characterizing both molecular and social systems, and the effect of 
these advances are beginning to be felt at the intermediate scales of 
mesoscale neural circuits and large-scale brain systems.
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Figure 1 Networks on multiple spatial and temporal scales. Network 
neuroscience encompasses the study of very different networks 
encountered across many spatial and temporal scales. Starting from the 
smallest elements, network neuroscience seeks to bridge information 
encoded in the relationships between genes and biomolecules to the 
information shared between neurons. It seeks to build a mechanistic 
understanding of how neuron-level processes give rise to the structure 
and function of large-scale circuits, brain systems and whole-brain 
structure and function. However, network neuroscience does not stop 
at the brain, but instead asks how these patterns of interconnectivity 
in the CNS drive and interact with patterns of behavior: how perception 
and action are mutually linked and how brain-environment interactions 
influence cognition. Finally, network neuroscience asks how all of these 
levels of inquiry help us to understand the interactions between social 
beings that give rise to ecologies, economies and cultures. Rather than 
reducing systems to a list of parts defined at a particular scale, network 
neuroscience embraces the complexity of the interactions between the 
parts and acknowledges the dependence of phenomena across scales. 
Box dimensions give outer bounds of the spatial and temporal scales at 
which relational data are measured and interactions unfold, and over which 
networks exhibit characteristic variations and dynamic changes. Inspired  
by an iconic image of neuroscience recording methods, last updated in ref. 1.  
ECOG, intracranial electrocorticography; EEG, electroencephalography; fMRI, 
functional magnetic resonance imaging; fNIRS, functional near-infrared 
spectroscopy; MEG, magnetoencephalography.
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Q1: 
la nostra scarsa capacita' di multitasking 

e' una feature o un bug?
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anatomy). Please note that because the quantification of
community structure was done on the shape graph as a whole
(i.e., across tasks), we combined task performance measures
across the working memory, video and math tasks.

To quantify the core−periphery structure in each participant’s
shape graph, we employed the generalized Borgatti and Everett41

algorithm that provides a coreness score (CS) for each node. This
algorithm assigns CS along a continuous spectrum with nodes
that lie most deeply in a network core with a CS ~1 to those that
are in the periphery with a CS ~039. Figure 4a presents shape
graphs annotated (or colored) by the task type as well as CS for
two representative participants. Remarkably, across all partici-
pants, the nodes containing resting state time frames were mostly
represented in the peripheries (mean CSRest [SD]= 0.15 [0.06]),
while the nodes containing time frames from cognitively
demanding tasks mainly lied relatively deeper inside the shape
graph (mean CSW.M. [SD]= 0.28 [0.04]; mean CSMath [SD]=
0.30 [0.04]; and mean CSVideo [SD]= 0.22 [0.06]). One-way
ANOVA revealed a significant effect of the task (F(3,51)= 24.06,
p < 0.0001), such that CSRest was observed to be significantly
lower than the CS of other three tasks, while coreness scores for
the working memory and math tasks were similar but higher than
that of the video task. This result indicates more consistency in
the whole-brain functional configurations was present during
math and memory task as compared to the less demanding
resting state.

To test the validity of the observed non-trivial arrangement of
resting state nodes in the peripheries while the cognitively
demanding nodes in the core, we employed three different null
models. Overall, the CS of nodes with resting time frames was
observed to be lower than all the three corresponding null models
(ps < 0.001), while the CS of nodes with working memory or math
frames was higher than all the three corresponding null models
(ps < 0.005). No significant difference was observed for the CS of
nodes with time frames from the video task and the correspond-
ing null models (Fig. 4b).

Anchoring topology of shape graphs in anatomy. To ground the
shape graphs and their properties into neurophysiology, we
provide three approaches that attempt to reveal the underlying
patterns of brain activity putatively responsible for the observed
topological features. In the first approach, we use spatial mixture
modeling (SMM)43 to reveal changes in brain activation maps
from one time frame to the next. The SMM approach includes
fitting a mixture of distributions and using a spatial Markov
random field to regularize the labeling of voxels into null, acti-
vated or deactivated. Thus, for each node in the shape graph and
the containing time frames, we generated whole-brain activation
(and deactivation) maps. To interactively examine the temporal
variations in these activation maps, we developed a web-tool
(Supplementary Figs. 2−3 and Supplementary Movie 1). The
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Q2: 
queste sono delle rappresentazioni delle attivazioni 

cerebrali di due persone durante vari tasks. Chi e' quello 
con la performance migliore (sx o dx)? 
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Capacita’ di multitasking come problema di grafi

Qual e’ il massimo numero di tasks
che una rete  puo’  eseguire in parallelo senza interferenza?
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What is the maximum number of tasks 
that the network can perform in parallel without interference?

Capacita’ di multitasking come problema di grafi
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anatomy). Please note that because the quantification of
community structure was done on the shape graph as a whole
(i.e., across tasks), we combined task performance measures
across the working memory, video and math tasks.

To quantify the core−periphery structure in each participant’s
shape graph, we employed the generalized Borgatti and Everett41

algorithm that provides a coreness score (CS) for each node. This
algorithm assigns CS along a continuous spectrum with nodes
that lie most deeply in a network core with a CS ~1 to those that
are in the periphery with a CS ~039. Figure 4a presents shape
graphs annotated (or colored) by the task type as well as CS for
two representative participants. Remarkably, across all partici-
pants, the nodes containing resting state time frames were mostly
represented in the peripheries (mean CSRest [SD]= 0.15 [0.06]),
while the nodes containing time frames from cognitively
demanding tasks mainly lied relatively deeper inside the shape
graph (mean CSW.M. [SD]= 0.28 [0.04]; mean CSMath [SD]=
0.30 [0.04]; and mean CSVideo [SD]= 0.22 [0.06]). One-way
ANOVA revealed a significant effect of the task (F(3,51)= 24.06,
p < 0.0001), such that CSRest was observed to be significantly
lower than the CS of other three tasks, while coreness scores for
the working memory and math tasks were similar but higher than
that of the video task. This result indicates more consistency in
the whole-brain functional configurations was present during
math and memory task as compared to the less demanding
resting state.

To test the validity of the observed non-trivial arrangement of
resting state nodes in the peripheries while the cognitively
demanding nodes in the core, we employed three different null
models. Overall, the CS of nodes with resting time frames was
observed to be lower than all the three corresponding null models
(ps < 0.001), while the CS of nodes with working memory or math
frames was higher than all the three corresponding null models
(ps < 0.005). No significant difference was observed for the CS of
nodes with time frames from the video task and the correspond-
ing null models (Fig. 4b).

Anchoring topology of shape graphs in anatomy. To ground the
shape graphs and their properties into neurophysiology, we
provide three approaches that attempt to reveal the underlying
patterns of brain activity putatively responsible for the observed
topological features. In the first approach, we use spatial mixture
modeling (SMM)43 to reveal changes in brain activation maps
from one time frame to the next. The SMM approach includes
fitting a mixture of distributions and using a spatial Markov
random field to regularize the labeling of voxels into null, acti-
vated or deactivated. Thus, for each node in the shape graph and
the containing time frames, we generated whole-brain activation
(and deactivation) maps. To interactively examine the temporal
variations in these activation maps, we developed a web-tool
(Supplementary Figs. 2−3 and Supplementary Movie 1). The
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in listening comprehension scores between sessions where sub-
jects were just listening to the radio or listening while driving
(Fig. 2D; t = 0.77, P = 0.46). Nonparametric permutation results
are reported in Table S1.

Selection of Networks of Interest. Fig. 3A shows the block design
paradigms used to identify the driving and listening networks.
The “driving network” was defined as the set of areas showing
significant activation during at least one block design involving
driving. The “listening network” was selected as the set of areas
showing significant activation during at least one block design
involving listening to either the GPS or the radio show. A small
number of voxels overlapping between the two networks were
discarded from further analyses (Table S2). The driving and
listening networks showed similar activation levels in the in-
tegrated and split tasks during block design conditions (Fig. 3B;
driving network: t = −1.49, P = 0.17; listening network: t = −0.25,
P = 0.81; combination: t = −1.06, P = 0.31; also Table S1).

Multivariate Integration. To assess neural interactions during the
integrated driving/listening task compared with the split version,
we designed a measure of between-network multivariate state
shifts. The rationale behind this measure is that when networks
cooperate during the integrated task, multivariate changes in ac-
tivity in one network should be accompanied by corresponding
multivariate changes in activity in the other one, irrespective of
univariate changes. For example, in the congruent driving task, a
new auditory instruction given by the GPS (e.g., turn left now) will
likely trigger a new activity pattern in the listening network. In
turn, the new instruction will lead to new motor commands and
associated visual inputs, which will likely trigger a new activity
pattern in the driving network. Over multiple instructions, the
multivariate changes in activity patterns over the two networks
should be correlated. Univariate correlations between the two
networks, triggered, for example, by particular frequencies in the
auditory instructions and by particular colors in the visual input,
are less likely to be correlated and less sensitive to low-amplitude
but spatially coherent changes. Nevertheless, both multivariate
and univariate correlations should be lower during the split task.

As a measure of multivariate integration, we measured the
similarity of changes in multivariate blood oxygen level-dependent
patterns across time within the driving and the listening networks
and compared it between the integrated and split tasks (Fig. 4A).
As predicted, the between-networks state-shift similarity was sig-
nificantly higher during the integrated task compared with the split
task (t = 3.63, P = 0.002; Fig. 4B and also Table S1). Multivariate
integration changes between the driving and listening networks
were consistent across frontal, parietal, and occipital areas (Fig.
S1). Fig. 4C shows that the ratio of average between-network
versus within-network univariate correlation was also higher in the
integrated task compared with the split task (t = 3.35, P = 0.0033).
Increased integration between conditions could not be explained
either by changes in physical stimuli correlation (Fig. S2) or by
changes in mean signal amplitude or movement (Table S3).

Integrated Information. Although high functional connectivity be-
tween two networks is consistent with the occurrence of cooperative
interactions, it could also be the result of common input from
shared sources. To evaluate the cooperative interactions between
the two networks explicitly, we developed a measure of integrated
information based on the improvement of multivariate prediction
by the whole network over its parts. Specifically, we used a multi-
variate least absolute shrinkage and selection operator (LASSO)
algorithm (13) to predict the future states (after one to 10 scan time
lags) of the driving and listening networks when taken together and
when taken separately (Fig. 5A). Integrated information was de-
fined as the improvement in multivariate prediction when using the
whole-system activity patterns to predict itself, compared with the
prediction accuracy obtained using driving and listening networks
separately predicting themselves. In contrast to correlation-based
measures, high values of integrated information require both high
integration and high differentiation of neural activity patterns. For
example, if the information shared between the networks were to
reflect common input, it would be redundant; hence, it would not
add to prediction accuracy. Following this rationale, we hypothe-
sized that integrated information would be higher in the integrated
task compared with the split task. As shown in Fig. 5B, the mean
integrated information over time lags was significantly greater
than zero in the integrated task (t = 3.44, P = 0.0028), but not in
the split task (t = −0.027, P = 0.51). Integrated information was
also significantly higher in the integrated task compared with
the split task (t = 2.75, P = 0.0094). Table 1 shows that this result
remained true when considering each individual time lag. Av-
erage functional connectivity values were 0.391 (t = 9.13, P <
0.001) in the integrated task and 0.294 (t = 7.43, P < 0.001)
in the split task (Fig. 5C). Mean functional connectivity was
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in listening comprehension scores between sessions where sub-
jects were just listening to the radio or listening while driving
(Fig. 2D; t = 0.77, P = 0.46). Nonparametric permutation results
are reported in Table S1.

Selection of Networks of Interest. Fig. 3A shows the block design
paradigms used to identify the driving and listening networks.
The “driving network” was defined as the set of areas showing
significant activation during at least one block design involving
driving. The “listening network” was selected as the set of areas
showing significant activation during at least one block design
involving listening to either the GPS or the radio show. A small
number of voxels overlapping between the two networks were
discarded from further analyses (Table S2). The driving and
listening networks showed similar activation levels in the in-
tegrated and split tasks during block design conditions (Fig. 3B;
driving network: t = −1.49, P = 0.17; listening network: t = −0.25,
P = 0.81; combination: t = −1.06, P = 0.31; also Table S1).

Multivariate Integration. To assess neural interactions during the
integrated driving/listening task compared with the split version,
we designed a measure of between-network multivariate state
shifts. The rationale behind this measure is that when networks
cooperate during the integrated task, multivariate changes in ac-
tivity in one network should be accompanied by corresponding
multivariate changes in activity in the other one, irrespective of
univariate changes. For example, in the congruent driving task, a
new auditory instruction given by the GPS (e.g., turn left now) will
likely trigger a new activity pattern in the listening network. In
turn, the new instruction will lead to new motor commands and
associated visual inputs, which will likely trigger a new activity
pattern in the driving network. Over multiple instructions, the
multivariate changes in activity patterns over the two networks
should be correlated. Univariate correlations between the two
networks, triggered, for example, by particular frequencies in the
auditory instructions and by particular colors in the visual input,
are less likely to be correlated and less sensitive to low-amplitude
but spatially coherent changes. Nevertheless, both multivariate
and univariate correlations should be lower during the split task.

As a measure of multivariate integration, we measured the
similarity of changes in multivariate blood oxygen level-dependent
patterns across time within the driving and the listening networks
and compared it between the integrated and split tasks (Fig. 4A).
As predicted, the between-networks state-shift similarity was sig-
nificantly higher during the integrated task compared with the split
task (t = 3.63, P = 0.002; Fig. 4B and also Table S1). Multivariate
integration changes between the driving and listening networks
were consistent across frontal, parietal, and occipital areas (Fig.
S1). Fig. 4C shows that the ratio of average between-network
versus within-network univariate correlation was also higher in the
integrated task compared with the split task (t = 3.35, P = 0.0033).
Increased integration between conditions could not be explained
either by changes in physical stimuli correlation (Fig. S2) or by
changes in mean signal amplitude or movement (Table S3).

Integrated Information. Although high functional connectivity be-
tween two networks is consistent with the occurrence of cooperative
interactions, it could also be the result of common input from
shared sources. To evaluate the cooperative interactions between
the two networks explicitly, we developed a measure of integrated
information based on the improvement of multivariate prediction
by the whole network over its parts. Specifically, we used a multi-
variate least absolute shrinkage and selection operator (LASSO)
algorithm (13) to predict the future states (after one to 10 scan time
lags) of the driving and listening networks when taken together and
when taken separately (Fig. 5A). Integrated information was de-
fined as the improvement in multivariate prediction when using the
whole-system activity patterns to predict itself, compared with the
prediction accuracy obtained using driving and listening networks
separately predicting themselves. In contrast to correlation-based
measures, high values of integrated information require both high
integration and high differentiation of neural activity patterns. For
example, if the information shared between the networks were to
reflect common input, it would be redundant; hence, it would not
add to prediction accuracy. Following this rationale, we hypothe-
sized that integrated information would be higher in the integrated
task compared with the split task. As shown in Fig. 5B, the mean
integrated information over time lags was significantly greater
than zero in the integrated task (t = 3.44, P = 0.0028), but not in
the split task (t = −0.027, P = 0.51). Integrated information was
also significantly higher in the integrated task compared with
the split task (t = 2.75, P = 0.0094). Table 1 shows that this result
remained true when considering each individual time lag. Av-
erage functional connectivity values were 0.391 (t = 9.13, P <
0.001) in the integrated task and 0.294 (t = 7.43, P < 0.001)
in the split task (Fig. 5C). Mean functional connectivity was
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losotomy induces a breakdown of integrated information between the two
hemispheres and the creation of two distinct functional entities. During daily
life, our brain functions as a unitary system during most tasks, such as when
driving while listening to GPS instructions (integrated task). Here, we asked
whether it is possible to obtain a functional split, rather than an anatomical one,
in the healthy human brain during an incongruent task, such as driving while
listening to a radio show (split task). (B) Example of a driving simulator scene and
of auditory instructions received during the integrated and split tasks.
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Fig. 2. Behavioral results. Group average of subjective ratings of task dif-
ficulty (A) and drowsiness (B) during the integrated and split tasks. Ratings
ranged from 1 (minimum) to 10 (maximum). (C) Group average of the driving
performance in the integrated and split task conditions. The driving perfor-
mance was defined as the deviation from the centerline of the track. (D) Group
average of scores in listening comprehension tests (out of 10 items). No sig-
nificant difference (n.s.) was found in any of the behavioral measures between
the integrated and split task conditions.
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functional split between the driving and listening networks favors
performance in the split task, whereas functional integration impairs
it. Future work will examine whether, as predicted by theoretical
considerations about the substrate of consciousness, the functional
split brain observed in the split task is associated with a transition
from one to two maxima of integrated information, and thus from
one to two streams of consciousness (28).

Materials and Methods
Participants. Thirteen healthy male (22–34 y of age) experienced drivers par-
ticipated in the study. All subjects provided informed consent following the
procedures approved by the Health Sciences Institutional Review Board of the
University ofWisconsin–Madison. Before the experiments, subjects practiced in
a driving simulator until driving performance became stable. Subjects per-
formed the same simulated driving task used in the fMRI experiment with the
goal of minimizing the deviation from the simulated track centerline.

Experimental Paradigm. All subjects completed fMRI sessions consisting of two
tasks of interest and three localizer tasks. During the tasks of interest, subjectswere
asked to drive (i) while following GPS instructions (integrated task) or (ii) while
listening to a radio show (split task). The three localizer tasks were designed to
identify brain regions separately involved in driving versus listening. Subjects
(iii) played the simulator alone (driving task), (iv) listened to GPS instructions
alone (GPS task), or (v) listened to radio show alone (radio task). All tasks were
first performed steadily for 5 min (steady-state design) and then repeated in
five additional sessions consisting of five 1-min task periods separated by 30-s
resting periods (block design). The block design tasks were performed in a
semirandomized order. First of all, all patients performed the single driving
task. Half of the subjects then performed the split task, the integrated task,
and then the radio show and GPS conditions. The other half performed the
integrated task, the split task, and then the GPS and radio show conditions.

Stimuli. A two-lane highway track without junctions or other vehicles was used
(Racer; www.racer.nl/). Subjects were instructed to change lanes when being
directed by the GPS in the integrated task or when passing designated objects
(road signs and call boxes) at sides of the track in the split and driving-alone
tasks. The number of lane switches was set to be the same among all tasks.

All auditory stimuli were prepared by recording the same female voice.
The narrative GPS guidance stimuli consisted not only of directions to make
subjects switch lanes but also directions calling attention to the objects on the
track. The radio show scripts were made of samples extracted from online
articles, and included various topics unrelated to the driving task.

Behavioral Measures. Subjects reported task difficulty and drowsiness after
each task condition. In addition, listening comprehension tests consisting of 10
questions were completed after task conditions involving auditory stimuli to
confirm that the concurrent execution of driving did not affect listening
comprehension. Two behavioral measures were quantified for the driving task.
First, the driving performance was defined as the difference between themean
deviation from the track centerline compared with a theoretical upper bound.
Second, the subjects’ overall driving skill was defined as the first principal

component of the driving performance (explaining over 96% of total variance)
across the split and integrated tasks. The driving performance of one subject
was not used in the analysis due to a failure of storing the driving record.

fMRI Data Acquisition. The fMRI time series were acquired using a 3-T GE MR
scanner. Multislice T2*-weighted fMRI images [repetition time (TR) = 1,100 ms,
echo time (TE) = 14 ms, 29 slices, with a slice thickness of 4 mm and an
interslice gap of 1 mm] and a structural T1-weighted sequence were acquired
in each subject. A time series of 300/437 volumes was acquired for each con-
dition of steady task/block task design. A high-resolution T1 image (parame-
ters: TR = 8.16 ms, TE = 3.18 ms, inversion time (TI) = 450 ms, 156 slices, with a
slice thickness of 1 mm) was also acquired in each volunteer at the end of the
whole experiment for coregistration to the functional data. During data ac-
quisition, subjects wore earphones in combination with earplugs and re-
mained in a comfortable supine position.

fMRI Data Preprocessing.All fMRI images were motion-corrected, slice timing-
corrected, and spatially smoothed (FWHM = 5 mm) using the SPM8 package
(Wellcome Department of Imaging Neuroscience, Wellcome Trust Centre for
Neuroimaging, London, United Kingdom). A frame-wise displacement over
0.15 mm was used to identify spike events. The dataset of one subject was
excluded from further analyses because 38% of fMRI data samples in the
integrated task were diagnosed as spike events. For other subjects, identi-
fied spike events in each condition were less than 15%.

Network Selection. We identified the driving and listening networks as the
voxels activated in at least one condition involving a driving or a listening task.
For the driving network, contrast images were computed (i) for the activation
compared with baseline in the isolated driving task, (ii) for the increased acti-
vation in the split task compared with the isolated radio task, and (iii) for the
increased activation in the integrated task compared with the isolated GPS task.
For the listening network, contrast images were computed (i) for the activation
compared with baseline in the isolated radio task, (ii) for the activation com-
pared with baseline in the isolated GPS task, (iii) for the increased activation in
the split task compared with the isolated driving task, and (iv) for the increased
activation in the integrated task compared with the isolated driving task. For
each network, a random effects analysis then tested for any activation under
the global null hypothesis. Network constituents were then defined as all voxels
surviving P < 0.05 corrected using voxel-wise, family-wise error. A small number
of voxels overlapping between the driving and listening networks were dis-
carded from further analyses. We used a two-sample t test to compare average
activation values in the driving and listening networks during the integrated
versus split task block designs. Throughout this study, parametric t test analyses
were confirmed by nonparametric permutation tests (reported in Table S1).

Multivariate Integration: Correlation of MVP Shifts. Recent studies have shown
that consistent multivoxel activity patterns (MVPs) are present with the same
task stimuli (29, 30). Thus, task-related transient state changes in a network
should be reflected by a temporal shift in MVP. We defined a multivariate
measure of functional integration (MVP shift similarity) based on the corre-
lation of MVP shifts within the driving and listening networks during each
task. Before calculating the index, the signals from white matter and ventricle
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significantly higher in the integrated task compared with the
split task (t = 2.50, P = 0.015; also Table S1). Interestingly,
integrated information was greater than zero during resting
state scans and in all single task scans; only in the split condi-
tion did it decrease to a zero mean (Fig. S3 and SI Discussion).
Fig. S3 reports increased multivariate integration, integrated
information, and average functional connectivity values during
resting state tasks and single tasks compared with the split
task condition.
Multivariate integration and integrated information measures

remained virtually unchanged after removing time periods con-
taining spatial attention instructions unrelated to driving (Fig. S4
and SI Discussion). Moreover, excluding occipital time series
from the analysis did not modify the results (Fig. S5).

Integrated Information and Behavior.We further hypothesized that
integrated information would be predictive of driving performance.
As shown in Fig. 6A, integrated information was positively corre-
lated with performance in the integrated task (r = 0.65, P = 0.032).

This result suggests that in the integrated condition, when auditory
information is used to navigate the road, cooperative interactions
between the two networks can help performance. Conversely, we
found trend toward a negative correlation between integrated in-
formation and performance during the split task (Fig. 6B; r = −0.4,
P = 0.22), suggesting that interactions between the two networks
might hinder, rather than improve, performance in this case.
Finally, we hypothesized that the subjects who would be best

able to switch between high integrated information between the
driving and listening networks during the integrated task and low
integrated information during the split task would be best at
maintaining a consistently high performance across tasks. As shown
in Fig. 6C, a within-subjects analysis shows that a high differential
in integrated information between the integrated and split tasks
predicted high sustained performance in both tasks (significant
correlation of r = 0.8 with P = 0.0031). These results held true after
controlling for individual average frame-wise displacement (14, 15)
(Table S4). Measures of functional connectivity or network activity
did not show such a correlation with performance (Fig. S6).

Discussion
We developed a driving while listening paradigm aimed at in-
ducing a functional split-brain condition in healthy human
subjects. We assessed multivariate functional connectivity and
integrated information between brain networks involved in driving
and listening during an integrated task, when subjects drove fol-
lowing GPS instructions, and during a split task, when they drove
while listening to a radio show. We found that the integration
between the two networks, assessed through a multivariate mea-
sure of functional connectivity based on coordinated shifts of
multivoxel patterns across time, was higher in the integrated task
compared with the split task. Furthermore, the integration of in-
formation between the two networks, assessed by the improve-
ment in prediction accuracy of the joint dynamics of the two
networks over their independent dynamics, was high in the in-
tegrated task and zero in the split task. Finally, subjects who were
better at switching between high and low integrated information
depending on the task had a better overall driving performance.
Because our aim was to characterize changes in between-

network interactions, we ensured that behavioral performance
and brain activation did not differ between the integrated and
split tasks by choosing relatively easy tasks; long, continuous
performance reproducing daily life situations; and highly trained
subjects (SI Discussion). We did not ceil the performance or use
any other way to equate the driving performance artificially
between tasks. Under different conditions, fMRI studies have
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Box 3. Resource sharing in symbolic architectures and connectionist models
The terms ‘shared resource’ and ‘shared representation’ describe similar concepts in different models of human multitasking. Models based on symbolic architectures
[39–41], such as ACT-R [2] and EPIC [40,44], consist of different modules (e.g., for processing sensory information, retrieving semantic knowledge, etc.). A module can
be considered a ‘shared resource’ if it is required by two or more tasks. It is generally assumed that if two tasks require the samemodule (e.g., declarative memory) at the
same time, they interfere with one another (Figure IA). However, practice may result in the compilation of task processes (e.g., ones that rely on declarative memory) into
specialized, task-dedicated processes that are independent of shared modules [41,162], leading to improvements in multitasking (Figure IB).

In a connectionist model, a module can be thought of as a set of closely interconnected processing units (physical substrates corresponding to individual neurons
or populations of neurons) that are used to represent a particular type of information, that is represented as a pattern of activity over those units. Interactions
among modules are generally assumed to be more common, direct, fine-grained, and continuous than is assumed in most symbolic architectures. However,
as in symbolic models, a module can be considered a ‘resource’ in that it can support only one pattern of activity and thus represent only one item of information
at a time. Thus, interference can arise if a resource is shared by two tasks that require it to represent different (incongruent) information at the same time
(Figure IC). However, this raises the question of how the sets of processing units that constitute a resource are defined or identified, making it difficult to determine
the extent to which two tasks share resources [56]. Operationally, this can be addressed by correlating the average pattern of activities across all units for pairs of
tasks [51,62,66]. This operationalization of resource sharing exploits the graded and distributed nature of representations in connectionist models, by: (i) allowing
it to be treated as a continuous rather than all or nothing factor, and (ii) allowing it to change as a consequence of learning through connection modifications.
The reliance on shared representational resources initially during learning, that supports more rapid acquisition and generalization, may help explain reliance
on control early during acquisition; whereas the progressive development of separate task-dedicated representations may help explain the gradual development
of automaticity (i.e., diminished reliance on control) and greater capacity for multitasking that comes with extensive practice [54,66] (Figure ID and see Figure 2D in
the main text).

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure I. Resource sharing and separation in symbolic and connectionist models. (A) Depiction of a resource shared between Task 1 and Task 2 in a
symbolic architecture. Both tasks rely on the serial execution of general task production rules the implantation of which requires the retrieval of information from
declarative memory (shared resource, shown in purple). Processing of Task 2 is delayed as long as the shared resource is occupied with processing the
production rule associated with Task 1. (B) Improvements in multitasking can be achieved by compiling general production rules into specialized, task-dedicated
rules that no longer make use of the shared resource [41,162]. (C) In a connectionist model, Task 1 and Task 2 may use some of the same processing units
constituting a module (e.g., the three units shown in dark green), leading both tasks to share a representation. As we discuss in the Concluding remarks, this may
also occur in neural network layers responsible for encoding declarative memories (cf. [163]), paralleling (A). (D) Improvements in multitasking can be achieved by
separating representations between tasks [54,66].
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Tradeoff Stabilita’ - Flessibilita’

landscape (an ‘attractor’). When such task information is presented to the network, its pattern of
activity evolves such that the system moves to that attractor (analogous to a ball rolling along a
surface to the bottom of the nearest well). If the representation of the task information corre-
sponds to a deep attractor, then even with small perturbations (e.g., due to noise) the system
is most likely to settle back to the same state (akin to a ball bouncing around in a deep well).
Thus, deep attractors make the system robust to noise. Conversely, shallow attractors make
the system more susceptible to noise (i.e., make it easier for the ball to pop out of the well), but
also make it easier to switch from one state to another.

Restrictions on the depth of attractors for task representations, implementing constraints on control
intensity, can promote flexible task switching but come at the expense of robustness to distractors
(Figure 3C) [120]. Simulation work suggests that higher constraints on control allocation (shallower
attractors) yield a higher reward rate in environments with higher demand for (e.g., greater frequency
of) task switches (Figure 3D). Furthermore, the behavior of participants in environments with a high
rate of task switches can be best explained with higher constraints on control, compared with par-
ticipants in environments with a low rate of task switches [121]. This is in line with a growing number
of studies showing that participants shift their balance to favor cognitive flexibility over stability if task
switches becomemore likely [122–125] (for a review, see [126]). Together, these computational and
empirical results suggest that it can be useful to limit the amount of control allocated to a single task,
given that this facilitates flexible switching between tasks.

TrendsTrends inin CognitiveCognitive SciencesSciences

Figure 3. Modeling the stability–flexibility trade-off. (A) Two-unit network used to illustrate the stability–flexibility trade-off
[119–121]. Each unit represents a control signal for one of two tasks. The activity of each unit corresponds to the amount of
control allocated to the corresponding task, that is determined by a recurrent excitatory input from itself and an inhibitory
input from the other unit, as well as external input such as a task cue (not shown). (B) The network implements a dynamical
system the state of activity of which (x-axis) is determined by its energy (y-axis; cf. [17,119,120,127]). The system has two
stable states (attractors), one for executing each of the two tasks. The network’s parameters determine the depth of the
attractors. Deep and shallow attractors correspond to networks with high and low amounts of control allocated to each task,
respectively. Thus, deep attractors implement cognitive stability due to stronger activation of the control representation;
whereas shallow attractors implement greater flexibility, making it easier to switch from one state to another (green arrow).
(C) Simulated activation trajectories [120] for shallow (left) and deep (right) attractors are shown as a series of connected light
green dots, evolving from the control attractor for Task 1 (black) to the control attractor for Task 2 (green). Contour lines and
arrows indicate the energy and shape of the attractor landscape after a task switch from Task 1 to Task 2. With more
control allocated to Task 1, the network requires more time steps to switch to Task 2. (D) Simulations show that the amount
of control allocated to a single task yielding the highest reward rate decreases with the frequency of task switches [120].
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is most likely to settle back to the same state (akin to a ball bouncing around in a deep well).
Thus, deep attractors make the system robust to noise. Conversely, shallow attractors make
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Restrictions on the depth of attractors for task representations, implementing constraints on control
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(Figure 3C) [120]. Simulation work suggests that higher constraints on control allocation (shallower
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of) task switches (Figure 3D). Furthermore, the behavior of participants in environments with a high
rate of task switches can be best explained with higher constraints on control, compared with par-
ticipants in environments with a low rate of task switches [121]. This is in line with a growing number
of studies showing that participants shift their balance to favor cognitive flexibility over stability if task
switches becomemore likely [122–125] (for a review, see [126]). Together, these computational and
empirical results suggest that it can be useful to limit the amount of control allocated to a single task,
given that this facilitates flexible switching between tasks.
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[119–121]. Each unit represents a control signal for one of two tasks. The activity of each unit corresponds to the amount of
control allocated to the corresponding task, that is determined by a recurrent excitatory input from itself and an inhibitory
input from the other unit, as well as external input such as a task cue (not shown). (B) The network implements a dynamical
system the state of activity of which (x-axis) is determined by its energy (y-axis; cf. [17,119,120,127]). The system has two
stable states (attractors), one for executing each of the two tasks. The network’s parameters determine the depth of the
attractors. Deep and shallow attractors correspond to networks with high and low amounts of control allocated to each task,
respectively. Thus, deep attractors implement cognitive stability due to stronger activation of the control representation;
whereas shallow attractors implement greater flexibility, making it easier to switch from one state to another (green arrow).
(C) Simulated activation trajectories [120] for shallow (left) and deep (right) attractors are shown as a series of connected light
green dots, evolving from the control attractor for Task 1 (black) to the control attractor for Task 2 (green). Contour lines and
arrows indicate the energy and shape of the attractor landscape after a task switch from Task 1 to Task 2. With more
control allocated to Task 1, the network requires more time steps to switch to Task 2. (D) Simulations show that the amount
of control allocated to a single task yielding the highest reward rate decreases with the frequency of task switches [120].
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[119–121]. Each unit represents a control signal for one of two tasks. The activity of each unit corresponds to the amount of
control allocated to the corresponding task, that is determined by a recurrent excitatory input from itself and an inhibitory
input from the other unit, as well as external input such as a task cue (not shown). (B) The network implements a dynamical
system the state of activity of which (x-axis) is determined by its energy (y-axis; cf. [17,119,120,127]). The system has two
stable states (attractors), one for executing each of the two tasks. The network’s parameters determine the depth of the
attractors. Deep and shallow attractors correspond to networks with high and low amounts of control allocated to each task,
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landscape (an ‘attractor’). When such task information is presented to the network, its pattern of
activity evolves such that the system moves to that attractor (analogous to a ball rolling along a
surface to the bottom of the nearest well). If the representation of the task information corre-
sponds to a deep attractor, then even with small perturbations (e.g., due to noise) the system
is most likely to settle back to the same state (akin to a ball bouncing around in a deep well).
Thus, deep attractors make the system robust to noise. Conversely, shallow attractors make
the system more susceptible to noise (i.e., make it easier for the ball to pop out of the well), but
also make it easier to switch from one state to another.

Restrictions on the depth of attractors for task representations, implementing constraints on control
intensity, can promote flexible task switching but come at the expense of robustness to distractors
(Figure 3C) [120]. Simulation work suggests that higher constraints on control allocation (shallower
attractors) yield a higher reward rate in environments with higher demand for (e.g., greater frequency
of) task switches (Figure 3D). Furthermore, the behavior of participants in environments with a high
rate of task switches can be best explained with higher constraints on control, compared with par-
ticipants in environments with a low rate of task switches [121]. This is in line with a growing number
of studies showing that participants shift their balance to favor cognitive flexibility over stability if task
switches becomemore likely [122–125] (for a review, see [126]). Together, these computational and
empirical results suggest that it can be useful to limit the amount of control allocated to a single task,
given that this facilitates flexible switching between tasks.
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Q2: 
Team omogenei funzionano bene sotto task 

demands constanti nel tempo ed uniformi nei tasks.  

Team eterogenei funzionano meglio quando il rate 
di switch e l’eterogeneita’ tra is task e’ grande. 
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There is a fundamental tension between two kinds of use of par-
allel distributed computing in network architectures. The first 
focuses on incorporating a variety of interacting constraints 

in the learning and processing of complex representations (‘inter-
active parallelism’). This has been profitably exploited in theories 
of human cognitive function1,2 and, most recently, in the design 
of ‘deep learning’ artificial systems3–5. The second kind of use, in 
contrast, focuses on the capacity of a network to carry out multiple 
processes independently (‘independent parallelism’). This approach 
has been exploited by the massively parallel systems used in most 
modern computing clusters, and optimized by message-passing sys-
tems, such as MPI (message-passing interface)6, that seek to identify 
and distribute independent components of computation.

Recent work has suggested that there is a fundamental tradeoff 
between these two types of parallelism that may help explain fun-
damental features of human cognitive function7. On the one hand, 
we can effortlessly perform many kinds of task at the same time, 
such as walking, talking and responding to our surroundings, all 
of which presumably involve extensive simultaneous computations. 
On the other hand, we are radically constrained in our ability to per-
form other kinds of task concurrently, such as planning a grocery 
list while simultaneously carrying out multidigit mental arithmetic. 
In cognitive psychology, this is attributed to a fundamental distinc-
tion between automatic and control-dependent processing8,9. The 
former is capable of effortless, simultaneous execution, while the 
latter is subject to seriality constraints on performance.

Early theorists proposed two alternative accounts for this con-
straint in control-dependent processing. One suggests that this 
reflects reliance on a centralized, limited capacity mechanism 
(akin to a central processing unit), thus explaining the dramatic 
limitation in the human ability to simultaneously perform mul-
tiple control-dependent tasks. The alternative interpretation sug-
gests that constraints in control-dependent processing reflect the 
purpose, rather than a limitation, of control mechanisms, that is, to 

resolve conflicts that arise from competition among the resources 
required to perform specific combinations of tasks, which them-
selves rely on the shared use of representations10–13.

Although compelling, the latter proposal was not undergirded 
by a formal analysis of the extent to which shared use of representa-
tions constrains processing at the system level. In particular, one 
concern might be that shared use of representations in a system as 
large as the human brain may pose minimal constraints on parallel 
processing. Recently, however, numerical work has shown that even 
modest sharing of representations among tasks can impose radical 
constraints on simultaneous execution due to crosstalk interfer-
ence among tasks, and that the effects of such interference can be 
invariant to network size14,15. Understanding the source of such con-
straints, and explaining them explicitly in mechanistically and for-
mally rigorous terms, remains an important challenge not only for 
understanding human performance—and how it arises from com-
putations in the brain—but also for the design of artificial systems 
that can emulate human performance.

In this Article, we provide a formal analysis of the problem, 
based on a combination of graph theory and statistical mechanics 
of frustrated systems. We illustrate the mechanism by which even 
modest degrees of shared representations impose strong constraints 
on the number of tasks that can be performed simultaneously with-
out the risk of interference from crosstalk between tasks. Our results 
highlight a fundamental tension in network architectures between 
the benefits that accrue from shared representations (that is, flex-
ibility of processing and generalization3–5) and their cost in terms of 
processing efficiency (that is, the number of independent tasks that 
can be performed in parallel7).

Results
Measures of task dependency predict parallel processing capabil-
ity in a trained neural network. To consider the problem of mul-
titasking (that is, concurrent parallel processing) analytically, we 

Topological limits to the parallel processing 
capability of network architectures
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The ability to learn new tasks and generalize to others is a remarkable characteristic of both human brains and recent artificial 
intelligence systems. The ability to perform multiple tasks simultaneously is also a key characteristic of parallel architectures, 
as is evident in the human brain and exploited in traditional parallel architectures. Here we show that these two characteristics 
reflect a fundamental tradeoff between interactive parallelism, which supports learning and generalization, and independent 
parallelism, which supports processing efficiency through concurrent multitasking. Although the maximum number of possible 
parallel tasks grows linearly with network size, under realistic scenarios their expected number grows sublinearly. Hence, even 
modest reliance on shared representations, which support learning and generalization, constrains the number of parallel tasks. 
This has profound consequences for understanding the human brain’s mix of sequential and parallel capabilities, as well as for 
the development of artificial intelligence systems that can optimally manage the tradeoff between learning and processing 
efficiency.
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